Lantern CLI
Autotune Index
With the Lantern CLI's autotune-index
routine, you can autotune an HNSW and find the index parameters which can give you the best recall and latency.
Prerequisites
- Lantern CLI
- Postgres database with the Lantern extension installed
Run Index Autotune
bash
Copy
lantern-cli autotune-index --uri 'postgresql://[username]:[password]@localhost:5432/[db]' --table "sift1m" --column "v" --metric-kind l2sq --pk id --recall 99 -k 30 --create-index
After this you should see output like this:
bash
Copy
[*] [Lantern Index Autotune] ========== Results for job 05a53289-7a80-4843-9ef7-bee951dbc13c ==========
[*] [Lantern Index Autotune] result(recall=96%, latency=7ms, indexing_duration=2s) index_params(m=6, ef=64, ef_construction=32)
[*] [Lantern Index Autotune] result(recall=98.5%, latency=7ms, indexing_duration=3s) index_params(m=8, ef=64, ef_construction=40)
[*] [Lantern Index Autotune] result(recall=98.9%, latency=7ms, indexing_duration=3s) index_params(m=12, ef=64, ef_construction=48)
[*] [Lantern Index Autotune] result(recall=99.2%, latency=9ms, indexing_duration=3s) index_params(m=16, ef=76, ef_construction=60)
[*] [Lantern Index Autotune] result(recall=99.8%, latency=11ms, indexing_duration=3s) index_params(m=32, ef=96, ef_construction=96)
[*] [Lantern Index Autotune] result(recall=99.9%, latency=14ms, indexing_duration=4s) index_params(m=48, ef=128, ef_construction=128)
And index will be created using create-index
CLI function with the best recall and latency if --create-index
is passed.
CLI parameters
Run bash lantern-cli autotune-index --help
to get available CLI parameters
bash
Copy
Autotune index
Usage: lantern-cli autotune-index [OPTIONS] --uri <URI> --table <TABLE> --column <COLUMN> --pk <PK>
Options:
-u, --uri <URI>
Fully associated database connection string including db name
-s, --schema <SCHEMA>
Schema name [default: public]
-t, --table <TABLE>
Table name
-c, --column <COLUMN>
Column name
--pk <PK>
Primary key name
--recall <RECALL>
Target recall [default: 98]
--k <K>
K limit of elements for query [default: 10]
--test-data-size <TEST_DATA_SIZE>
Test data size [default: 10000]
--metric-kind <METRIC_KIND>
Distance algorithm [default: l2sq] [possible values: l2sq, cos, hamming]
--create-index
Create index with the best result
--export
Export results to table
--job-id <JOB_ID>
Job ID to use when exporting results, if not provided UUID will be generated
--export-db-uri <EXPORT_DB_URI>
Database URL for exporting results, if not specified the --uri will be used
--export-schema-name <EXPORT_SCHEMA_NAME>
Schame name in which the export table will be created [default: public]
--export-table-name <EXPORT_TABLE_NAME>
Table name to export results, table will be created if not exists [default: lantern_autotune_results]
--model-name <MODEL_NAME>
Model name to save in results
-h, --help
Print help